Stochastic Planning and Lifted Inference
نویسنده
چکیده
Lifted probabilistic inference (Poole, 2003) and symbolic dynamic programming for lifted stochastic planning (Boutilier et al, 2001) were introduced around the same time as algorithmic efforts to use abstraction in stochastic systems. Over the years, these ideas evolved into two distinct lines of research, each supported by a rich literature. Lifted probabilistic inference focused on efficient arithmetic operations on template-based graphical models under a finite domain assumption while symbolic dynamic programming focused on supporting sequential decisionmaking in rich quantified logical action models and on open domain reasoning. Given their common motivation but different focal points, both lines of research have yielded highly complementary innovations. In this chapter, we aim to help close the gap between these two research areas by providing an overview of lifted stochastic planning from the perspective of probabilistic inference, showing strong connections to other chapters in this book. This also allows us to define generalized lifted inference as a paradigm that unifies these areas and elucidates open problems for future research that can benefit both lifted inference and stochastic planning.
منابع مشابه
Lifted Stochastic Planning, Belief Propagation and Marginal MAP
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes several contributions in this context for factored spaces where the complexity of solutions is challenging. First, we analyze the recently developed SOGBOFA heuristic, which performs stochastic planning by building an explicit computation graph capturing an approximate agg...
متن کاملLifted Relational Variational Inference
Hybrid continuous-discrete models naturally represent many real-world applications in robotics, finance, and environmental engineering. Inference with large-scale models is challenging because relational structures deteriorate rapidly during inference with observations. The main contribution of this paper is an efficient relational variational inference algorithm that factors largescale probabi...
متن کاملLifted Parameter Learning in Relational Models
Lifted inference approaches have rendered large, previously intractable probabilistic inference problems quickly solvable by employing symmetries to handle whole sets of indistinguishable random variables. Still, in many if not most situations training relational models will not benefit from lifting: symmetries within models easily break since variables become correlated by virtue of depending ...
متن کاملGraphical models and symmetries: loopy belief propagation approaches
Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, sto...
متن کاملLifted Online Training of Relational Models with Stochastic Gradient Methods
Lifted inference approaches have rendered large, previously intractable probabilistic inference problems quickly solvable by employing symmetries to handle whole sets of indistinguishable random variables. Still, in many if not most situations training relational models will not benefit from lifting: symmetries within models easily break since variables become correlated by virtue of depending ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.01048 شماره
صفحات -
تاریخ انتشار 2010